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Abstract~The venerable problem of the origins of cracking and failure of a brittle heterogeneous
solid (heterogen) under compression is analyzed here from a new point of view. with the cause of
its microcracking and atrophy (degeneration) under load. found. first of all. in the differences in
Poisson's ratio of its components.

Four fundamental phenomena. found in experiments. are the basis of the new approach to the
behavior and failure of a hetf!rogen under compression. (I) The non-linear part of the ascending
branch of SSc is due to formation and accumulation of srable microcracks. (2) The intrinsic elastic
modulus remains constant up to the peak point. (3) Concrete and rock fail in splilling. (4) The
pattern of SSc is the same for different types of concrete and rock under different types of loading.

It is found that some kinds o(gradient mechanisms can induce local transverse strains o(tension
and cause microcracking in a heterogen under compression. The first creates local strain gradients
among the components due to difference in their Poisson extension. when the components with
lower Poisson's ratio are tensioned in the lateral direction. There is also a mechanism which creates
an internal thrust due to gradient in the elastic moduli of the component.

It is shown that. in a brittle solid built from randomly oriented crystals. a population of laterally
tensioned crystals. called "acrons". are created due to gradients in Poisson's ratio of a single crystal
along its three axes. The models of gradient strain in the acrons are given. including the equation
of critical strains. The problem of crystals acting as "pistons" due to a process of sliding is also
discussed.

The gradient models explain the appearance of microcracks and their stochasticity and why.
instead of growing into macrocracks. they are stable. in good accordance with a vast number of
experiments. Gradient mechanisms, especially that of Poisson, are universal, descripti/'e and based
on measurable parameters. They suffice to exhaust the bearing capacity of a heterogen under
increasing compression without recourse to shear stresses. They affect every heterogen under com­
pression: rock materials, concrete, ceramics~and do not need initial microcracking to initiate and
realize the process of atrophy (degradation) of the brittle solid. ((') 1997 Elsevier Science Ltd.

DEFINITIONS

At first a brittle heterogeneous solid will be referred to as a heterogen. A matrogen is a special important class of
heterogens, which consist of a continuous matrix and of particles (aggregate) that "float" in the matrix without
mutual contact. In an artificial matrogen. like concrete, the granulometry is given and kept under very close
control. A heterogen built of contacted particles or grains can be called a patrogen. There can be a 'glue' between
the particles. but it does not create a matrix. The case of interest is a crystalon. a kind of patrogen which is built
of randomlv oriented crystals almost without glue components.

NOMENCLATURE

Heterogen
SSc

a. ae
E

a.m

brittle heterogeneous solid
the curve of stress-strain relationship
longitudinal strain
lateral strain induced by load
transverse strains and their gradients. respectively
lateral strain induced by Poisson extension
longitudinal and lateral stress. respectively
elastic modulus
Poisson's ratio
gradient factor
indices of the components
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1. RUPTURE OF BRITTLE SOLID

1.1. State of the art
In traditional description, the limiting strength of brittle solids is considered with the failure­
inducing peak load, whereby the failure concept is associated with development of a major
crack. Today this definition is obsolete. With more precise specimen-testing techniques, the
descending branch in the stress-strain curve (SSe) is well recognized, and an ever-growing
volume of findings regarding its features and design applications is being published. The
upshot is that, in spite of the inherent brittleness of concrete and rock the maximum stress
is not the endpoint of the loading curve; although it still represents the peak response of
the specimen, it is no longer associated with total failure. In other words, it can no longer
be identified with the moment of rapid collapse of the material following the onset and
development of a major crack. Hence the need has arisen to bring out the "cushioned, soft"
effects whereby the resistance of the material reduces gradually as the stress level increases.
Thus the strength problem is a part of a general one-that of describing the state changes
in the material which accompany the increase in the strains and stresses.

This problem is under intensive study in a number ofdirections, which may be classified
according to approach and to the type of the considered physical process, namely:

Models of macrofracture (fracture mechanics) ;
Meso-models (damage analysis) ;
Local (micro)mechanical models of constituent interactions;
Models on the molecular level;
Abstract models (purely mathematical treatment).

Infracture mechanics, Mindess (1983), failure is attributed to an initially present major
crack. Today it is clear that this scheme (referred to as "Mode I") cannot by itself account
for the physical aspects of damage and strength of brittle solids.

To quote NMAB Report (1983), " ... The committee identified two separate behavior
patterns in compressive fracture. The first is an extrinsic behavior pattern resulting from
large cracks, comparable with the size of the part, amenable to normal approaches of
fracture mechanics ...

The second is an intrinsic behavior pattern, resulting from the accumulation ofdormant
microcracks and culminating in terminal shear faulting that has been analyzed previously
as a constitutive instability, not amenable to treatment by normal procedures ofIracture
mechanics" .

Naturally, in fracture mechanics, priority is given to the domain from the point of
peak stress down the descending branch of the SSe. The fracture approach is applied in a
considerable number of works on fracture energy determination--as a basic characteristic
for prediction of concrete failure based on measurements of the fracture energy [Swamy
(1971), Shah (1985), van Mier (1986), Malvar (1987), Bazant (1987)]. The difficulties
inherent in the fracture approach are properly illustrated in Mindess (1983).

The molecular approach is mostly concerned with the structure of hard cement paste,
Feldman (1968), and existing data are qualitative rather than quantitative.

As regards the mathematical approach, considerable effort has been invested in searches
for abstract stress-strain relationships (of which more than twenty have been proposed to
date), without reference to the mechanism of the microcracking process (Popovics, 1971).
With this lack of physical meaning, none of them can claim superiority.

The (relatively recent) so-called damage model approach deals with the nonlinear part
of the ascending branch--in terms of the microcracking effect (Kzajcionovic, 1986; Lemaitre,
1987).

Here the material is considered at the level of "unit cells" containing a statistically
valid sample of weak spots and microcracks which exists before the loading and is treated
by micromechanical models. Yet it was established experimentally long ago, that the main
phenomenon of this stage is accumulation of stable microcracks, which begin to merge near
the strength point, forming macrocracks (with consequent division of the solid in parts),
(Berg (1950,1961,1971), Slate (1963, 1981a, 1981b, 1986), Li and Nordlund (1993».
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A number of difficulties can be associated with the damage models:

a. What are the cause and the rules of the onset of microcracking? Where does the
tension in a fully compressed solid come from?

b. Why does the tensile effect invariably "pick" new sound spots in concrete and rock,
creating new microcracks with increasing stress-instead of opening up existing ones? Or,
why do microcracks, once induced, remain dormant?

c. Why are the planes of new microcracks, induced under increasing load, oriented
longitudinally, in the direction of compression?

Possible answers to these questions are given below in terms of transverse gradient
strains.

1.2. Griffith's point of vieH'
In view of Griffith's role in fracture mechanics, it may be of interest to begin with a

quote from his second paper, (1924, page 62), which states his view on the difficulties in
transition from a highly homogeneous amorphous solid, without even any scratches on its
surface, to a more or less rough heterogen. (Griffith conducted his study on very carefully
prepared glass specimens!) "The rupture strain energy of the strongest silica rods is so great
that if it were all converted into heat it would make the rod red-hot. It is of interest to
enquire, therefore, what becomes of this energy when fracture occurs. It is not converted
into heat; indeed, measurements have shown that the defect of elasticity of the strong
material is so inappreciably small that such an operation would take several minutes at
least. What actually happens is that the energy is used up almost entirely in forming new
surfaces, that is, surfaces of fracture, in the material. The disintegration of a strong drawn­
down part is sometimes so complete that recognizable portions of this part are difficult to
find. The sick ends also are usually broken, owing to the propagation of an elastic wave
from the original fracture.

In concluding. I wish to refer to some of the difficulties which impede the further
development of the theory of rupture. On attempting to pass from isotropic (amorphous)
solids to brittle crystals we at once meet the difficulty that the surface tension is not a
constant, but is a function of the position of the surface in the space lattice, so that the
theoretical strength is different for different faces. The anisotropic nature of the elasticity
is the further obstacle."

As we can see, Griffith saw very clearly the complexity and difficulties of transition
from an isotropic material to a heterogen. It can also be said that these difficulties are not
over even now, as shown by Mindess (1983).

1.3. Tension under compression
It is now clear enough that destruction in uniaxially compressed concrete is a result of

local transverse tension [Berg (1950,1971), Slate (1981,1986), Delibes (1987)].
F. Slate et al. in (1986) drew the following conclusion:

"A tensile (or tensile-shear) mechanism is the most relevant crack mechanism controlling
failure of concrete in uniaxial compression. This failure occurs in a direction perpendicular
to applied load for all the concretes tested.

Normal strength concretes develop highly irregular failure surfaces including a large
amount of bond failure. Medium strength concrete develop a similar mechanism, but at
higher strain. The failure mode of high strength concretes is typical of nearly homogenical
material. Failure occurs suddenly in a vertical, nearlyjiat plane passing through the aggregate
and the mortar."

This fact is the basis of the approach, developed in Blechman (1988, 1989, 1992), where
the nonlinearity of concrete behavior on the ascending branch of SSe is explained by
microcracking.

Yet theoretically, in a continuous elastic solid under uniaxial compression transverse
tensile stresses cannot be induced. An attempt to lay the responsibility on the existing
oblique cracks is limited by the simple fact that they do not change, Slate (1981, 1986),
under loading, but stay "dormant" up to stresses near the peak point of SSe. Instead of
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opening the initial microcracks, new microcracks appear, but they also are stable and do
not grow, NMAB Report (1983).

The transverse tension also cannot be explained by this part of Poisson extension
which is restricted by press-platens. As commonly known, without restraints, Poisson exten­
sion does not induce stresses. However, when the friction between platens and specimen is
eliminated, the pattern of material splitting becomes especially clear. It should be noted
that besides concrete and rock, other brittle materials, like ceramic and cast iron, fail in the
same manner. If so, we should come to the conclusion that the mechanisms of failure of
brittle solids are very general and independent from the individual features of concrete,
rock and so on.

2. SPECIFICITY OF HETEROGENS

2.1. Generalfeatures
• Heterogens are isotropic in macro, since their behaviour and strength are independent

of the direction of loading.
• They are heterogeneous and anisotropic in micro, since they are built of randomly oriented

and randomly combined components, whose properties are different when taken in the
direction of the load.

• The internal order in artificial heterogens like ceramics and concrete is of a heavily
restricted stochastic structure. Local parameters in it fluctuate only between given limits
and mean parameters are kept in line with the technical requirements by rigorous
quality control during the production process.

• The intrinsic elastic modulus of heterogen-E, measured under low-cyclic loading, is
constant, as long as the integrity of the heterogen is retained, Karsan (1969).

• To study the brittle solids from nature (rock materials), we have to classify and sort
them into groups with the same structure. Then the deviations of their features will be
restricted, similar to artificial heterogens.

• Under short-term uniaxial load and normal temperature, a heterogen has no plastic
strains, which can smooth out the influence of local gradients. Due to absence of
plasticity, the tensile strength of brittle solids in macro is much lower than their
compressive strength, in contrast to heterogen with high plasticity like soft metals,
where the strengths in tension and compression are eq ual.

2.2. Microcracking-fundamentals
• The failure of a heterogen under compression is always preceded by microcracking,

(see Berg (1950), Slate (198Ia), Shah (1968b), Glucklich (197Ib».
• Microcracks induced in a heterogen during loading are local and stable. Their plane is

parallel to the direction of maximal compressive stress. It has also been known for a
long time, that under repeated load the microcracks are usually detected by acoustic
emission, when the previously applied stress state is exceeded (Kaiser effect), Li and
Nordlund (1993).

• Microcracking is the reason for the nonlinearity of the stress-strain curve at the ascending
branch under short-term compression in both uniaxial and triaxial compression. It is
clear now that there is no plasticity in the non-linear stage of loading, except for triaxial
compression with high lateral stress.

• Accumulation ot'dormant microcracks gradually causes the heterogen to degenerate
internally. This process is intrinsical and therefore is called "atrophy", not damage,
which can be a result of external mechanical action. Failure sets in when the limiting
atroph.v is reached, which is the moment when the increment in loading energy absorbed
by the heterogen equals the loss of energy due to its atrophy (degeneration), Blechman
(1992).
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2.3. Integrity ofheterogen
The above mentioned features are effective up to the point of peak stress on the stress­

strain curve. As is seen from the condition: E = const, integrity of a heterogen in the
longitudinal direction is retained in the above domain, even when microcracks occur.

After the peak point of SSc the macro cracks usually split the heterogen into parts
(blocks), which can still carry a decreasing load. The features of the macrocracked heterogen
are essentially different and we have to treat it as a heterogen of a different kind. Therefore
the models considered below are built for an integral heterogen existing in the domain
before the peak point of the stress-strain curve. Due to this distinction in the features of
the heterogen, one can hardly imagine a unified model valid for both-the ascending and
descending branches of the SSc.

2.4. Definition ofheterogen
For the proposed aim the following main features of the material, considered at the

ascending branch of SSe, define a brittle heterogen: (a) it is isotropic in macro, (b) it is
heterogeneous in micro, (c) its integrity is retained in the longitudinal direction of loading,
(d) there are essential differences in Poisson's ratio and/or in the elastic moduli of its
components, (e) its intrinsic elastic modulus is constant in macro, and (f) plasticity is
absent under uniaxial compression.

2.5. Origins and role ofgradients
The following main factors can induce gradient strains and stresses in a brittle solid

under compression:

• Differences in Poisson's ratio and in the elastic moduli of the components.
• Residual stresses and local variations in density.
• Local tension around pores and flaws, Zaitsev (1981).
• Local shear due to gradients in shear modulus of the components.

Note: In this paper only the first item is treated, the residual stresses are taken under
consideration in part 2.

When unconfined, Poisson extension (it is not tension!) in uniaxially compressed solids
does not create stresses. However, in a restricted state gradients in Poisson extension induce
transverse strains in accordance with Hooke's law. When this restriction is due to differences
in Poisson 's ratio of the components, their gradient will be expressed in very local com­
binations of compressive and tensile transverse strains. At the same time, differences in the
elastic moduli of the components create heterogeneity in the strain-stress fields of the
heterogen, which also induces lateral tension in it. as shown below.

3. LAYERED ELEMENT··"SANDWICH"

Let us begin with the phenomenon of gradient strains in a uniaxially compressed
"sandwich", namely a multilayered element, built from two solids, indexed a and m ("'aggre­
gate" and "matrix") with Poisson's ratio Va> V,W

Cutting from the "sandwich" a part shown in Fig. I, we can write the following
equations: eqn (I) of continuity between the two layers, eqn (2) ofequality in the increment
of the gradient lateral forces--dF (transverse compression and tension) in these two layers
and eqn (3) of the increment in the longitudinal strains, due to the isostress state of
compression in the layers.

dF(I = dF,II'

d£m = da/Em,

(I)

(2)

(3a)

(3b)
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Fig. I. Incremental strains in layered solid dOn" dCa-longitudinal strain of m- and a-layers; df.~:,

dE:;'-free Poisson extension of m- and a-layers; d8~-gradient strain of tension in m-layer; d8,~­

gradient strain of compression in a-layer; dE-full extension. I--Initial state, 2-compressed state.

where eps-free Poisson extension and e*-transverse strain induced by gradient; d(J, d£­
the increments in longitudinal stress and strain, respectively.

The increment of the gradient forces can be expressed by the parameters of the
layers, when their elastic moduli in the lateral direction are taken as equal to those in the
longitudinal direction. (The layers are taken as isotropic in macro.)

(4a)

(4b)

where: E-modulus of elasticity, h", h",-thicknesses of layers.
As follows from (2) and (4) :

The factor:

h",Em

p,,=-/E '
1a (j

expresses the relationship between the stiffnesses of the two layers.
The increments in free Poisson extension of the layers are:

Substituting the above equations in (I) yields:

(5)

(6)

(7a)

(7b)
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d/;* = _1_ (-"'"- _ ~)d(T
m 1+Po Ea Em .
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(8)

The expression in brackets is a combi-gradient 6" which includes the influence of Poisson
ratios and elastic moduli:

We will also denote:

_ Va Vm

0, = E
a

Em (9a)

1
Pm=~+ 'Po

d
Po

an Pa=~+ .
Pa

Integrating (8) between the limits 0 and (T, with Poisson's ratio taken independent of (J, we
obtain the gradient of transverse strain of tension, accumulated in the m layer:

(lOa)

The opposite gradient strain of transverse compression in the a-layer is

(lOb)

Equation (lOa) can be also presented as

(10c)

Then the expression in brackets is a Poisson gradient in the "sandwich", corrected in the
second term by the factor Eo/En:

(9b)

With /; = (J! Ea , the equation of gradient strain of local tension becomes

(Wc)

In the compressed layer the gradient strain is:

(IOd)

As can be seen from eqn (9) with some proportionality between two pairs of Poisson ratio
and elastic moduli, the gradient 6., in the "sandwich" can be very slight. For example: if
Va = 0.26, Vm= 0.13, when Ea = 40,000 MPa, Em = 20,000 then 6, = O!

When the "sandwich" is built from crystalline brittle solids, it is quite possible that the
gradient factors at crystals level-6aa (described below in Section 5), will be higher than
between the layers. Then the "sandwich" will be split due to intercrystalline gradients
described below, not due to interlayer differences.
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4. COMPRESSED MATROGEN

4.1. Poisson's gradient in matrogen
In matrogens, unlike the "sandwich", the aggregate particles are surrounded by a

matrix and therefore their longitudinal strains, not the stresses, are almost equal. Then,
instead of eqn (3) the increments dea, dem in their longitudinal strains have to be written
as:

(II)

where k", kIll are a deviation of the components from the average increment in the material.
In an artificial matrogen, like concrete, the granulometry, i.e., the composition of

aggregate of different size, is kept under very close controL At the same time the dispositions
of the large aggregate particles is random enough for assuming the same average value for
the stiffness ratio of the components~-poat every cross-section, as follows

(12)

Here, v'" and L'" are volume fractions of matrix and aggregate, respectively. The matrix
comprises the hardened cement paste, sand and voids. For a matrogen, eqn (2) remains in
effect and yields:

(13)

The free Poisson extension of the components will be:

where V'I' v'" are the Poisson ratios of the aggregate and matrix, respectively. Equation (I)
is also in effect for a matrogen, so substituting the found expressions in (1) we have

(14)

Taking Pm = 1/(1 +Po) and integrating (14) from I; = 0 to I; we obtain the equation for
gradient strain of local transverse tension-e~ induced in the matrix:

(l5a)

The expression

(16)

can be defined as the gradient factor in matrogen. Then the gradient tensile strain is

(15b)

Then the gradient of the compressive strain will be

(15c)

Let us attempt a rough estimation of the gradient factor in concrete, with Vm = 0.14 and
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Va = 0.24, Neville (1971). For Eo = 40,000 MPa, Em = 15,000 MPa, C" = C,m ka = 1.05,
km = 0.95 we have Po = 0.375 and Pm = 0.73. Then the gradient factor will be:
6,. = 0.73 *(0.24 * 0.95-0.14 * 1.05) = 0.06.

4.2. Poisson gradient-alternative approach
In considering the gradient strain, we can try another approach, based on the apparent

value of Poisson's ratio of the matrogen-v", measured in tests. Then the average gradient
strain-8* induced by Poisson's ratio between the matrix and aggregate can be estimated
as

(17)

The condition of continuity is "built in" in (17), as the apparent value of Poisson's ratio
was taken. Under this approach the gradient factor is defined and calculated as

(18)

Since Poisson's ratio for concrete is about 0.20 and, as given above, v'" = 0.14, the second
estimation yields similar result to the above 6,. = 0.20-0.14 = 0.06.

4.3. Significance
The importance of the Poisson gradient factor lies, at first, in the possibility of explain­

ing the process of microcracking and predicting the critical loading strains. However, due
to stochasticity of the microcracking process, the gradient models cannot be simply used
to explain the behavior and strength of concrete. In part 2 of this paper the solution of this
problem is given.

On the other hand models can be used for revealing the resistance of the heterogen to
microrupture. For example. if 8" = 1.7 * 10- 3 and 6 = 0.06 then the critical lateral gradient
strain, which will induce microrupture, can be predicted as 8~rir = I * 10 -4, which falls
within the well known limits OS 1.5 * 10- 4 millistrain for concrete tensile strain at failure.
Or, when we know the critical strain of microcrupture in a heterogen, we can predict the
limit of linearity in the SSe.

4.4. Thrust in matrogen
When the elastic moduli of matrix and aggregate in a matrogen are widely different

(as in low-strength concrete), heterogeneity of the stress field will create local domains of
thrust between aggregate particles.

To model the stress gradients induced by thrust in a uniaxially compressed heterogen
we will consider the large aggregate particles as spheres of radius-r, arranged as shown in
Fig. 2 in layers at distance H in the vertical and L in the horizontal direction, with the
particles in a pyramid pattern. Here L > 2H and between every pair of layers of aggregate
there is a cushion-layer of matrix. The heterogen is under a longitudinal compressive
strain 8.

When the elastic modulus of the matrix is less than that of the aggregate, the stresses
in the aggregate are higher than that in the matrix. Taking the stresses in matrix as references
we can find the excess compressive stresses in the large particles for a unit cross-section of
the element from the following expression:

(19)

where k I is a factor of the disorder for the large particles and of dissipation of the excess
stress over the fine-size particles.

Then, the thrust in the base of a pyramid for this scheme will be
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Fig. 2. Pyramid scheme of aggregate particles and thrust in matrogen.

(20a)

(20b)

Here, k/ is also a factor of disorder, but now related to the geometry of the pyramids.
Denoting k,,/km = k, and taking K/r = k/k1km , we obtain

(20c)

In strain terms, dividing (20c) by En" we have

(21a)

where the gradient factor of thrust 6E is

(21 b)

In the bulk of the heterogen the thrust in every "pyramid" is neutralized by the opposite
thrust of the "neighbors". The thrust can manifest itself only at the free edges of the
specimen and due to space-disorder of aggregate particles.

Estimation olK,Jor concrete. To estimate the K/r we will use the state of local rupture
where
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(22)

[;R being the limiting strain of microrupture (taken as 1.0 * 10-4
). The peak strain in concrete

under compression~ep,is 2.2 * 10-> and again k = 1, Ea = 40,000 MPa, Em = 15,000 MPa,
hence bE = 1.667 and KIf = 0.03.

A possible explanation for this very low value of Kin is that most of the thrust is
dissipated over the fine grains and due to the disorder in the arrangement of large particles.

5. CRYSTALON UNDER COMPRESSION

5.1. Acrons
As defined above, a crystalon is a heterogen built from randomly oriented crystals.

Usually the Poisson's ratios related to the main axes of a single crystal are very distinct.
Therefore, in crystalon under compression, gradient strains appear and two populations of
laterally tensioned and laterally compressed crystals are created. As the origin of the crys­
talon's atrophy, the laterally tensioned population is of highest importance. Being an
antithesis to the laterally compressed particles they can be called anti-crystals +on = acrons,
the suffix "on" being a common part of the particle nomenclature. Non-symmetric gradi­
ents, which can induce other than compression-tension states in crystals, are not considered
here.

5.2. Elastic gradients in acrons
In contrast with the matrogen whose particles and matrix are homogeneous in macro,

irrespective of the direction of the load, the acron strains in a crystalon depend on its angle
with the direction of the main stress.

To estimate the gradients induced between the acrons and their environment due to
the difference in elastic moduli and Poisson's ratio in the elastic stage, a simple model of a
symmetrical acron is taken, as shown in fig. 3. Its main axes a and b are at the angle'J. to
the direction of the main compressive strain [;1' The axis c is horizontal and at the right
angles to a and b and to the axis" I". The elastic moduli and Poisson ratios of the acros
are: Em Va' Eh, Vb, Ec• V" when Ec = Eb, and Vc = Vh'

The shear stresses and shear-induced gradients (due to differences in elastic moduli
along the axes I, 2, 3 of the acron) are not taken here into consideration since these
gradients are zero for 'J. = 0, when the Poisson gradients are maximal. Shear gradients
have their maximum at 'J. = 45 deg, but then the Poisson gradients are minimal and the
contribution of shear gradients is negligible.

.',,,
----~,\-\-'-,,

........-.
~ ".,.,

'.

Fig. 3. Incremental gradient strains in acron dEy. dEh-infinitesimallongitudinal strains in 'a' and
'b' directions; dEP'-free Poisson extension ofacran; do- --effective extension of acron ; dE* -gradient

strain of tension in acron.
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The bulk of the crystalon around the acran is taken in whole with its average parameters
EO' v" in al1 directions. By definition of the acron Va < V" < Vn. The element is under
longitudinal strain B[ and lateral strains B2 = B3, with

According to Fig. 3 the infinitesimal strains for axes a and bare:

dBa = (cos2
Q( +W sin 2

IX) dB] .

dBn = (sin 2
Q( +W cos2

IX) dB [

and

Denoting

We have

dBa =f~ dB].

dBn =f~ dB).

dB, = wdBJ.

The lateral strain-dBa-for a free single crystal is:

(23a)

(23b)

(23c)

(23d)

(23e)

(23f)

(23g)

(24a)

Replacing the single crystal by the bulk material we can find the lateral deformation of this
"bulk" crystal dB" as

(24b)

The strain gradient of tension between the bulk and the single crystal- dB*--is

(25a)

It should be noted that the condition of continuity is preferred in these equations, because
the actual values of Va and E" in eqns (24b) express the real interaction of the crystalon's
components. Substituting eqns (24) in (25a) we obtain

dB* = (va - Va) dBa- (v,. - v,,) dB,.

The above differences can be denoted as

°a=Vo-Vo·

6(. == V(-V
O •

Using the above definitions and the condition (23g) we can rewrite (25b) as

(25b)
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The expression in brackets is the acron's gradient factor-6"cr

and then (25c) can be rewritten as

2575

(25c)

(26)

(27)

In (27) 6"" is independent from £1. Integrating (27) in the limits {Q--£d we will find the local
lateral gradient strain as the following

(28)

It should be noted that by definition of the acron, the gradient 6"cr is positive

6(J~( - w 6, > O.

This gradient strain between the acron and the bulk is maximal when (J2 = 0, (y. = O. Then
its value will be

(29)

which corresponds to egn (17) for a matrogen.
The submicrocracks found by Attiogbe and Darwin (1987) seems to be induced by the

acron-kind mechanisms.

5.3. Releasable energy in acrons

5.3.1. Influence ofgeometry. In seeking the limiting state for heterogen microrupture,
we have to note that in contrast with Griffith's approach, which considers an infinite half­
space of tensioned isotropic material with one or more small initial cracks, here we consider
a longitudinally compressed crystalon without initial cracks, namely a population of small
laterally tensioned crystals-acrons, tightly glued in laterally compressed surroundings.

Two schemes are basic here: one when the contact zone around the acron is weaker
than the acron itself and the other when the acron is weaker than its surroundings. Since
the microcracking is release of the tensile energy accumulated in the acron, the condition
of limiting strain should be supplemented by the energy balance in it. Due to the rigid
confinement of the acron, only part of this energy can be released in a microcrack.

For a rough, preliminary estimation of the link between the geometry of the acron and
the energy available for microcracking we will consider a single acron as a prism with
dimensions: a, b, h, when a > b. The boundary plane between the zone of releasable energy
and the confined zone in acron is taken at 45 grad. The x, y axes are chosen from the
condition VI > V" so that the strain energy is released along axis x. It then suffices to check
four possibilities: a 'I x and b II x, for h ~ band h < b.

The results show that the volume of the domains of releasable strain energy in acrons
can vary widely from 5 to 42%, depending on geometry and orientation of the acron, and
influence seriously the strength of heterogen under compression.

5.3.2. Lateral strain of rupture. The releasable energy of tension accumulated in an
acron by the lateral gradient strains, £*, (per unit side area) is
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(30a)

where Eaer is the elastic modulus of the acron and tau is the average width of the releaseable­
energy zone.

At the critical state of microrupture, the gradient strain has to equal that of resistance
of the contact layer to tension, eCOni ' The energy Iff con1 needed to rupture the contact layer
will be

(30b)

where Econl is the elastic modulus of the contact layer and tCOni its width.
Rupture takes place when the energies are equal

<ff'conf = ~Ger'

Then the critical strain of rupture, e;t;.'l will be

(3Ia)

Under the second scheme (weak aCTon), the critical strain is the limiting strain of rupture
of the acron itself

(31 b)

5.4. Multi-acrons
Multi-acrons can be defined as a chain or tree of contacting acrons with the same E

and v, but of different slope to the direction of 0'1' Naturally, in the chain the ratio h/I.b
(I.b being the length of the chain) will be very low and, in this case, as shown above, the
accumulated tensile energy which can be transmitted through this chain will be, at most,
the releasable energy of a single crystal.

Moreover, with its random structure, a multiacron will have a broken, dentale shape,
where every acron is anchored by its laterally compressed neighbors, actually unable to
transmit the gradient strain to the next acron in the chain. Thus, in a multiacron, the
possible point of microcracking is a contact between two acrons, especially if we bare in
mind the doubled releaseable tensile energy, at that point. As a result, we can consider that
existence of multiacrons can give rise to the process of micocracking at earlier stages of the
loading and reduce the strength of the crystalon.

When a crystalon contains several kinds of dispersed crystals with different v and E,
we have to superimpose the probability density functions (pdf) of the strain gradients
induced by each of these kinds.

5.5. Poisson pistons
Olaffson and Peng (1976) described some microcracking mechanisms in a mono­

crystalline solid-Tennessee marble, tested in uniaxial and also in triaxial compression with
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high lateral pressure (Fig. 4). They found that the induced microcracks (not the lamellae)
under all kinds of loading were oriented close to the direction of maximum compression,
demonstrating the action of local lateral tension. Since the nonlinear stage of degeneration
(atrophy) of a crystalon determines its bearing capacity (see part 2), it is important to check
the microcracks not at the peak point or even in the after-peak stage, but first of all during
the nonlinear stage of the ascending branch of the stress-strain curve. In the center of
picture A of figure 6 of their paper, a clear vertical microcrack splits a grain at this stage
(as can be seen from the graph in this figure), its location apparently determined by twin
lamellae from the contacting grains. These cracks were frequently observed and their
nucleation mechanism was called type I.

The second frequently observed mechanism is of laterally expanding grains, which
clearly ruptured their surrounds by vertical microcracks. They act as pistons, and so we
will call them. At the elastic stage single crystals will behave as pistons, when their axis of
maximum Poisson ratio vp is nearly laterally oriented. In this case the gradient factor, which
can be called the piston gradient, can be approximated as

(32a)

For example, for vp = 0.3 and Vo = 0.2 the bps! = 0.1O!
Mechanism IV is presented by Olaffson and Peng as a case of plasticity, when twin

gliding creates lamellae, Poisson's ratio of the grain increases up to 0.5, and then we have
a piston gradient of'piasticity, (jpp, which is especially high:

(32b)

For Vo = 0.2 we have bpp = 0.30(!!). This very large gradient can explain the strong
piston effect in the lateral direction, which induces not one, but a number of cracks in the
neighboring grains, as the pictures in the above paper show. The question is whether this
takes place within the ascending nonlinear part ofSSc or at the after-peak stage (descending
branch), where it is no longer relevant in the bearing capacity context in its usual meaning.
In any case, the population of "pistons" can add a good part to the process of microcracking
and degeneration (atrophy) of a crystalon.

6. MICROCRACKS

6.1. Opening
In contact-type rupture one zone of an acron's releasable energy is active. By contrast,

when the body of an acron or a multiacron is ruptured, the tensioned releasable zones are
doubled and the crack opening can be doubled compared with the contact-type case. It is
of interest to estimate the microcracks' opening. In a matrogen (like concrete) the length
of the microcracks is of 3-6 mm, Slate et ai. (l98Ia,b). They are usually found on the

2

Fig. 4. Scheme of "piston-grain" action (I) piston-grain (2) distribution of piston pressure (3)
microcracks in surrounding grains.
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interface between aggregate and matrix and therefore are of the contact rupture type.
Taking the depth of the releasable zone as half their length (45 grad!) and the limiting strain
of microrupture elp = (1-2) * 10-4

, we find that the opening is 0.15-0.6 * 10- 1
.

In a crystalon with cubic crystals of about I* I*1 mm, in contact-type rupture, when
e,p = (1-2) * 10-4 the opening will be about (0.5-1.0) * 10' 4, and in a internal rupture of a
multiacron it will be (1-2) * 10- 4

• Attiogbe and Darwin (1987) investigated submicrocracks
in hardened cement paste and found their opening in the above order.

6.2. Locality and stability
The situation where acrons in a compressed crystallon are isolated by laterally com­

pressed surroundings explains the phenomenon of locality and stability of microcracks.
The compressed surroundings restrict and even arrest the development of a microcrack at
the moment of its appearance. Microrupture of an acron (or of its contact) eliminate not
only the releasable tension induced by gradients, but even the possibility of the gradients
to appear anew at the ends of the microcrack in spite of continuous Poisson extension
during the loading. At the same time other acrons with a lower gradient factor reach the
critical strain of local microrupture and after appearance of microcracks they also sink into
the stable state and remain dormant almost up to the peak stage while the limiting atrophy
is reached.

6.3. Merging
In the atrophy approach, the bearing capacity of heterogen is exhausted when, due to

progress in microcracking process, it reaches its atrophy limit, as described in Blechman
(1992). The distribution of microcracks according to type and its change with increase in
stresses, for different stress states and for concrete of different strength and types were
thoroughly investigated by Slate (1981 a). He had found the process of "bridging", coupling
of stable microcracks in the last step of microcracking process, without their merging into
macrocrack. It means that we can work on the problem of bearing capacity without treating
the microcracks interaction. In other words, when searching after the hearing capacity of
brittle solid only, we do not need to know where and how the main macrocrack will split
the specimen (from the data we know it), because it takes place at the very end and even
after the process of exhaustion of the bearing capacity of the material.

7. CONTRASTS

The conditions. under which the micromechanical mechanisms operate, are induced
by combination of the characteristics of heterogen's components. Moreover there is a
"competition" among the mechanisms. The one which induces the largest gradients "wins"
the competition and will be (usually alone) the origin of microcracking.

Crystalon vs matrogen. In a crystalon under compression the Poisson mechanism and
the pistons are the only origin of heterogen's degeneration, when the laterally tensioned
particles. acrons or multiacrons, are surrounded by a mass of laterally compressed crystals
and especially when they are overlapped by pistons. By contrast, plain concrete is a
matrogen, where thc particles of aggregate, with Poisson's ratio higher than that of the
matrix. are compressed and the matrix around them tensioned. In concrete with lightweight
aggregate, where Poisson's ratio of the strong matrix is higher than that of the aggregate,
the latter will be tcnsioned and matrix compressed.

Comparing the gradients we can see that in a matrogen of the kind of low-strength
plain concrete, with large difference in elastic moduli between matrix and aggregate, and
relatively low adhesion between them, the thrust mechanism is critical and will destroy the
material. Even in this state participation of the Poisson's mechanism has to be taken into
consideration.

According to our observations, when the friction between concrete specimen and the
platens of the testing set-up is eliminated, the tested cubes are split by vertical cracks into
four to six parts. It happens with concrete of strength from 20 MPa upwards and is
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especially noticeable in high-strength concrete of 60--1 00 MPa. Here the Poisson mechanism
dominates strongly in the atrophy process and the splitting phenomenon is pronounced,
Slate (1981, 1986), showing clearly the transition from thrust-type to crystalon-type rupture.

Micro us macro. The parameters in the above gradient micromodels are measurable
and can be found from tests. The critical problem of their statistical character and link with
the macroparameters of atrophy is the subject of part 2 of this paper.

Shear us tension. As one can see, the limiting shear stresses do not appear in the
gradient models of microcracking. It corresponds to the findings of Blechman (1997), which
show that the resistance of a brittle solid to shear stress is very high and the stage of
degeneration due to microcracking is reached first. Only when microcracking loosens the
heterogen can the shear forces go into action.

DiJpersed tension. When va> V m , the local tension induced by thrust between lateral
sides of the particles in a matrogen is combined with the tension induced above and below
the particles due to gradient in Poisson's ratio. These two kinds of gradient tension vary
differently during the stage of microcracking. Cracking of the spots tensioned by the Poisson
gradient, eliminates the tension in it, but only a small part of these spots are cracked. Where
the microcracks cut the thrust spots their mutual neutralization is weakened, and then the
thrust-induced transverse tension is dispersed laterally through the uniaxially compressed
heterogen.

During the loading, the lateral strains gradient and microtensions arise and local lateral
tension increases. As a result, the particles in the matrogen are surrounded by a matrix
compressed in the longitudinal direction, but is under dispersed tension in lateral direction,
which overlaps the local gradient strain.

As is well known, the correct pattern of failure of a brittle solid under compression
after accumulation of microcracks, is its splitting by one or more vertical macrocracks,
which occur at the peak point of the load. In the traditional approach to this phenomenon
the dispersed lateral macrotension in the matrogen can be the missing factor, but in
crystalon-type rupture the splitting cannot be explained in this way.

8. SUMMARY

A review of existing models of the behavior and strength of brittle heterogeneous solid
(heterogen) shows their weak physical base. When built in general they do not fit the data
well and do not explain the appearance of microcracks without initial cracks and pores.

Griffith's approach, which assumes a tensioned, homogeneous half-space with initial
cracks perpendicular to the direction of main stress is a case in point. In the present work,
instead of abstracting the brittle solid as a homogeneous material, it is assumed to be
heterogeneous from the beginning, together with the paradigm that its failure under com­
pression is always preceded by appearance of microcracks. These microcracks are local,
stable (dormant), and uniformly distributed, their plane is parallel to the direction of
maximal compressive stress. The intrinsic elastic modulus of heterogen is constant up to
the peak load.

It is shown that gradients in Poisson's ratio and in the elastic moduli of the components
of the brittle solid can explain the phenomenon of its microcracking in compression. A
number of gradient mechanisms were modelled here: the Poisson mechanism in layered
material ("sandwich") ; the Poisson and thrust mechanisms in a matrogen, for example as
concrete; the Poisson gradients of tension in a crystalon, which create "acrons"-Iaterally
tensioned crystals, because of minimal Poisson's ratio in their lateral direction, when their
surroundings are laterally compressed, and also the mechanisms of "pistons", (crystals
with maximum Poisson's ratio in the lateral direction), which can go to the state of plasticity
and crack the neighboring crystals.

The conclusions which can be drawn from these mechanisms are:
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• The gradient models can explain the appearance of microcracks and their features
(especially their locality and stability) in a compressed brittle solid, based on its known
characteristics.

• These models, and especially the mechanisms of Poisson's gradient, are universal.
They affect every heterogen under compression: rock materials, concrete, ceramics etc.

• The gradient mechanism does not need initial cracks for inducing and realizing the
process of microcracking and degeneration.

• Gradient mechanisms are stochastic; they do not cause macrocracks, but induce a
lot of stable microcracks, in good accordance with a vast number of experiments.

• The gradient models are descriptive, based on clear mechanics and on the measurable
parameters of the heterogen.

• The thrust mechanism is important in matrogens (like low strength concrete), when
a large difference in the elastic moduli of the components exists.

• In a compressed crystalon (brittle solid built from randomly oriented crystals), a
population of laterally tensioned crystals, called "acrons", is created. The models of gradient
strain in the acrons are given, including the equation of critical strains. Since the acrons are
glued in a fully compressed environment, the question of releasable energy in the critical
state was checked.

• In contrast to acrons, the "pistons", laterally overcompressed crystals or grains, due
to high positive gradient with laterally compressed surroundings, can crack their overlying
and underlying neighbors. The action of pistons is especially strong where, due to transition
into the state of plasticity, their Poisson's ratio rises up to 0.5.

• Gradient mechanisms suffice to cause degeneration in a heterogen and exhaust its
bearing capacity under increasing compression, without recourse to shear stresses.

• The gradient models show that the strength of crystalon increase when the crystals
are of minimal dimensions and have minimal differences in the mechanical characteristics
along their main axes and when their limiting strain of sliding (plasticity) is as close to the
maximal value as possible for given atomic composition.

• Corroboration of the role of gradient-strain mechanisms in the behavior of a het­
erogen under load can be seen in the success of this approach in solving of two theoretically
interesting and practically important old problems: one of bearing capacity of brittle solids
and granular materials in triaxial compression, part I in Blechman (1997) ; and the second
of modelling the lateral stress release, part 2 in Blechman (1997). The solution of the latter
shows that the earth's crust is always in the limiting slate of its bearing capacity and
explains, in good accordance with well known facts, that even a small drop in lateral
compression in the crust suffices to induce an earthquake.
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